Mdm-2 and ubiquitin-independent p53 proteasomal degradation regulated by NQO1.

نویسندگان

  • Gad Asher
  • Joseph Lotem
  • Leo Sachs
  • Chaim Kahana
  • Yosef Shaul
چکیده

The tumor suppressor p53 is a labile protein whose level is known to be regulated by the Mdm-2-ubiquitin-proteasome degradation pathway. We have found another pathway for p53 proteasomal degradation regulated by NAD(P)H quinone oxidoreductase 1 (NQO1). Inhibition of NQO1 activity by dicoumarol induces p53 and p73 proteasomal degradation. A mutant p53 (p53([22,23])), which is resistant to Mdm-2-mediated degradation, was susceptible to dicoumarol-induced degradation. This finding indicates that the NQO1-regulated proteasomal p53 degradation is Mdm-2-independent. The tumor suppressor p14(ARF) and the viral oncogenes SV40 LT and adenovirus E1A that are known to stabilize p53 inhibited dicoumarol-induced p53 degradation. Unlike Mdm-2-mediated degradation, the NQO1-regulated p53 degradation pathway was not associated with accumulation of ubiquitin-conjugated p53. In vitro studies indicate that dicoumarol-induced p53 degradation was ubiquitin-independent and ATP-dependent. Inhibition of NQO1 activity in cells with a temperature-sensitive E1 ubiquitin-activating enzyme induced p53 degradation and inhibited apoptosis at the restrictive temperature without ubiquitination. Mdm-2 failed to induce p53 degradation under these conditions. Our results establish a Mdm-2- and ubiquitin-independent mechanism for proteasomal degradation of p53 that is regulated by NQO1. The lack of NQO1 activity that stabilizes a tumor suppressor such as p53 can explain why humans carrying a polymorphic inactive NQO1 are more susceptible to tumor development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73.

Protein degradation is an essential and highly regulated process. The proteasomal degradation of the tumor suppressors p53 and p73 is regulated by both polyubiquitination and by an ubiquitin-independent process. Here, we show that this ubiquitin-independent process is mediated by the 20S proteasomes and is regulated by NQO1. NQO1 physically interacts with p53 and p73 in an NADH-dependent manner...

متن کامل

P53 hot-spot mutants are resistant to ubiquitin-independent degradation by increased binding to NAD(P)H:quinone oxidoreductase 1.

Proteasomal degradation of p53 is mediated by two alternative pathways that are either dependent or independent of both Mdm2 and ubiquitin. The ubiquitin-independent pathway is regulated by NAD(P)H: quinone oxidoreductase 1 (NQO1) that stabilizes p53. The NQO1 inhibitor dicoumarol induces ubiquitin-independent p53 degradation. We now show that, like dicoumarol, several other coumarin and flavon...

متن کامل

20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1.

Ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, is a very labile protein. ODC is a homodimeric enzyme that undergoes ubiquitin-independent proteasomal degradation via direct interaction with antizyme, a polyamine-induced protein. Binding of antizyme promotes the dissociation of ODC homodimers and marks ODC for degradation by the 26S proteasomes. We describe here a...

متن کامل

Inhibition of NAD(P)H:quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin.

NAD(P)H:quinone oxidoreductase 1 (NQO1) regulates the stability of the tumor suppressor WT p53. NQO1 binds and stabilizes WT p53, whereas NQO1 inhibitors including dicoumarol and various other coumarins and flavones induce ubiquitin-independent proteasomal p53 degradation and thus inhibit p53-induced apoptosis. Here, we show that curcumin, a natural phenolic compound found in the spice turmeric...

متن کامل

NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53.

Tumor suppressor p53 is either lost or mutated in several types of cancer. MDM2 interaction with p53 results in ubiquitination and 26S proteasomal degradation of p53. Chronic DNA damage leads to inactivation of MDM2, stabilization of p53, and apoptotic cell death. Here, we present a novel MDM2/ubiquitination-independent mechanism of stabilization and transient activation of p53. The present stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 20  شماره 

صفحات  -

تاریخ انتشار 2002